Trait alga::general::AbstractMonoid [−][src]
pub trait AbstractMonoid<O: Operator>: AbstractSemigroup<O> + Identity<O> { fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool
where
Self: ApproxEq, { ... } fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool
where
Self: Eq, { ... } }
A semigroup equipped with an identity element.
∃ e ∈ Self, ∀ a ∈ Self, e ∘ a = a ∘ e = a
Provided Methods
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: ApproxEq,
Self: ApproxEq,
Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications.
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq,
Self: Eq,
Checks whether operating with the identity element is a no-op for the given argument.
Implementations on Foreign Types
impl AbstractMonoid<Additive> for u8[src]
impl AbstractMonoid<Additive> for u8impl AbstractMonoid<Additive> for u16[src]
impl AbstractMonoid<Additive> for u16impl AbstractMonoid<Additive> for u32[src]
impl AbstractMonoid<Additive> for u32impl AbstractMonoid<Additive> for u64[src]
impl AbstractMonoid<Additive> for u64impl AbstractMonoid<Additive> for usize[src]
impl AbstractMonoid<Additive> for usizeimpl AbstractMonoid<Multiplicative> for u8[src]
impl AbstractMonoid<Multiplicative> for u8impl AbstractMonoid<Multiplicative> for u16[src]
impl AbstractMonoid<Multiplicative> for u16impl AbstractMonoid<Multiplicative> for u32[src]
impl AbstractMonoid<Multiplicative> for u32impl AbstractMonoid<Multiplicative> for u64[src]
impl AbstractMonoid<Multiplicative> for u64impl AbstractMonoid<Multiplicative> for usize[src]
impl AbstractMonoid<Multiplicative> for usizeimpl<N> AbstractMonoid<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, [src]
impl<N> AbstractMonoid<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, impl<N> AbstractMonoid<Additive> for Complex<N> where
N: AbstractGroupAbelian<Additive>, [src]
impl<N> AbstractMonoid<Additive> for Complex<N> where
N: AbstractGroupAbelian<Additive>, impl AbstractMonoid<Additive> for i8[src]
impl AbstractMonoid<Additive> for i8impl AbstractMonoid<Additive> for i16[src]
impl AbstractMonoid<Additive> for i16impl AbstractMonoid<Additive> for i32[src]
impl AbstractMonoid<Additive> for i32impl AbstractMonoid<Additive> for i64[src]
impl AbstractMonoid<Additive> for i64impl AbstractMonoid<Additive> for isize[src]
impl AbstractMonoid<Additive> for isizeimpl AbstractMonoid<Multiplicative> for i8[src]
impl AbstractMonoid<Multiplicative> for i8impl AbstractMonoid<Multiplicative> for i16[src]
impl AbstractMonoid<Multiplicative> for i16impl AbstractMonoid<Multiplicative> for i32[src]
impl AbstractMonoid<Multiplicative> for i32impl AbstractMonoid<Multiplicative> for i64[src]
impl AbstractMonoid<Multiplicative> for i64impl AbstractMonoid<Multiplicative> for isize[src]
impl AbstractMonoid<Multiplicative> for isizeimpl AbstractMonoid<Additive> for f32[src]
impl AbstractMonoid<Additive> for f32impl AbstractMonoid<Additive> for f64[src]
impl AbstractMonoid<Additive> for f64impl AbstractMonoid<Multiplicative> for f32[src]
impl AbstractMonoid<Multiplicative> for f32impl AbstractMonoid<Multiplicative> for f64[src]
impl AbstractMonoid<Multiplicative> for f64