Trait alga::general::AbstractSemigroup [−][src]
pub trait AbstractSemigroup<O: Operator>: PartialEq + AbstractMagma<O> { fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool
where
Self: ApproxEq, { ... } fn prop_is_associative(args: (Self, Self, Self)) -> bool
where
Self: Eq, { ... } }
An associative magma.
∀ a, b, c ∈ Self, (a ∘ b) ∘ c = a ∘ (b ∘ c)
Provided Methods
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: ApproxEq,
Self: ApproxEq,
Returns true if associativity holds for the given arguments. Approximate equality is used
for verifications.
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq,
Self: Eq,
Returns true if associativity holds for the given arguments.
Implementations on Foreign Types
impl AbstractSemigroup<Additive> for u8[src]
impl AbstractSemigroup<Additive> for u8impl AbstractSemigroup<Additive> for u16[src]
impl AbstractSemigroup<Additive> for u16impl AbstractSemigroup<Additive> for u32[src]
impl AbstractSemigroup<Additive> for u32impl AbstractSemigroup<Additive> for u64[src]
impl AbstractSemigroup<Additive> for u64impl AbstractSemigroup<Additive> for usize[src]
impl AbstractSemigroup<Additive> for usizeimpl AbstractSemigroup<Multiplicative> for u8[src]
impl AbstractSemigroup<Multiplicative> for u8impl AbstractSemigroup<Multiplicative> for u16[src]
impl AbstractSemigroup<Multiplicative> for u16impl AbstractSemigroup<Multiplicative> for u32[src]
impl AbstractSemigroup<Multiplicative> for u32impl AbstractSemigroup<Multiplicative> for u64[src]
impl AbstractSemigroup<Multiplicative> for u64impl AbstractSemigroup<Multiplicative> for usize[src]
impl AbstractSemigroup<Multiplicative> for usizeimpl<N> AbstractSemigroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, [src]
impl<N> AbstractSemigroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, impl<N> AbstractSemigroup<Additive> for Complex<N> where
N: AbstractGroupAbelian<Additive>, [src]
impl<N> AbstractSemigroup<Additive> for Complex<N> where
N: AbstractGroupAbelian<Additive>, impl AbstractSemigroup<Additive> for i8[src]
impl AbstractSemigroup<Additive> for i8impl AbstractSemigroup<Additive> for i16[src]
impl AbstractSemigroup<Additive> for i16impl AbstractSemigroup<Additive> for i32[src]
impl AbstractSemigroup<Additive> for i32impl AbstractSemigroup<Additive> for i64[src]
impl AbstractSemigroup<Additive> for i64impl AbstractSemigroup<Additive> for isize[src]
impl AbstractSemigroup<Additive> for isizeimpl AbstractSemigroup<Multiplicative> for i8[src]
impl AbstractSemigroup<Multiplicative> for i8impl AbstractSemigroup<Multiplicative> for i16[src]
impl AbstractSemigroup<Multiplicative> for i16impl AbstractSemigroup<Multiplicative> for i32[src]
impl AbstractSemigroup<Multiplicative> for i32impl AbstractSemigroup<Multiplicative> for i64[src]
impl AbstractSemigroup<Multiplicative> for i64impl AbstractSemigroup<Multiplicative> for isize[src]
impl AbstractSemigroup<Multiplicative> for isizeimpl AbstractSemigroup<Additive> for f32[src]
impl AbstractSemigroup<Additive> for f32impl AbstractSemigroup<Additive> for f64[src]
impl AbstractSemigroup<Additive> for f64impl AbstractSemigroup<Multiplicative> for f32[src]
impl AbstractSemigroup<Multiplicative> for f32impl AbstractSemigroup<Multiplicative> for f64[src]
impl AbstractSemigroup<Multiplicative> for f64