Trait alga::general::AbstractRingCommutative [−][src]
pub trait AbstractRingCommutative<A: Operator = Additive, M: Operator = Multiplicative>: AbstractRing<A, M> { fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool
where
Self: ApproxEq, { ... } fn prop_mul_is_commutative(args: (Self, Self)) -> bool
where
Self: Eq, { ... } }
A ring with a commutative multiplication.
∀ a, b ∈ Self, a × b = b × a
Provided Methods
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: ApproxEq,
Self: ApproxEq,
Returns true if the multiplication operator is commutative for the given argument tuple.
Approximate equality is used for verifications.
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq,
Self: Eq,
Returns true if the multiplication operator is commutative for the given argument tuple.
Implementations on Foreign Types
impl AbstractRingCommutative<Additive, Multiplicative> for i8[src]
impl AbstractRingCommutative<Additive, Multiplicative> for i8impl AbstractRingCommutative<Additive, Multiplicative> for i16[src]
impl AbstractRingCommutative<Additive, Multiplicative> for i16impl AbstractRingCommutative<Additive, Multiplicative> for i32[src]
impl AbstractRingCommutative<Additive, Multiplicative> for i32impl AbstractRingCommutative<Additive, Multiplicative> for i64[src]
impl AbstractRingCommutative<Additive, Multiplicative> for i64impl AbstractRingCommutative<Additive, Multiplicative> for isize[src]
impl AbstractRingCommutative<Additive, Multiplicative> for isizeimpl AbstractRingCommutative<Additive, Multiplicative> for f32[src]
impl AbstractRingCommutative<Additive, Multiplicative> for f32impl AbstractRingCommutative<Additive, Multiplicative> for f64[src]
impl AbstractRingCommutative<Additive, Multiplicative> for f64impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative for Complex<N>[src]
impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative for Complex<N>